แนวคิดที่ว่าสิ่งต่างๆประกอบด้วยอนุภาคขนาดเล็กที่
ไม่สามารถมองเห็นได้ด้วยตาเปล่าได้เริ่มขึ้นในสมัยกรีกโบราณโดยดิโมคริตุสนักปราชญ์ชาวกรีกผู้หนึ่งได้เสนอแนวคิดว่าถ้าแบ่งสิ่งต่างๆให้มีขนาดเล็กลงเรื่อยๆ
จะได้หน่วยย่อยซึ่งไม่สามารถแบ่งให้เล็กได้อีกเรียกว่าอะตอมซึ่งอะตอมในภาษากรีกแปลว่าแบ่งแยกอีกไม่ได้
2.1 แบบจำลองอะตอม
2.1.1 แบบจำลองอะตอมของดอลตัน
ในปีพ.ศ 2346 จอห์นดอลตัน
นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของมวลของสารก่อนและหลังทำปฏิกิริยาเคมีรวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบหนึ่งหนึ่งซึ่งมีสาระสำคัญดังนี้
1.ประกอบด้วยอนุภาคขนาดเล็กๆเหล่านี้เรียกว่าอะตอมซึ่งแบ่งแยกและทำให้สูญหายไม่
ได้
2.อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกันเช่นมีมวลเท่าแต่จะมีสมบัติแตกต่างจาก
อะตอมของธาตุอื่น
3.สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยาเคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อยๆ
ทฤษฎีอะตอมของดอลตันช่วยให้นักวิทยาศาสตร์ในสมัยนั้นสามารถอธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่งต่อมาได้มีการศึกษาเกี่ยวกับอะตอมเพิ่มขึ้นและค้นพบว่ามีข้อมูลแบบประกันไม่สอดคล้องกับแนวคิดของดอลตัน
เช่นคำว่าต่อมของธาตุชนิดเดียวกันมีมวลแตกต่างกันได้อะตอมสามารถแบ่งแยกได้อีกแนวคิดเกี่ยวกับทฤษฎีอะตอมของดอลตันจึงไม่ถูกต้อง
2.1.2 แบบจําลองอะตอมของทอมสัน
นักวิทยาศาสตร์หลายคนได้ศึกษาการนำไฟฟ้าของแก๊สโดยทดลองเกี่ยวกับผลของการใช้ความต่างศักย์ไฟฟ้าสูงต่อกับการเคลื่อนที่ของประจุไฟฟ้าของอะตอมแก๊สเพื่อให้ได้ข้อมูลที่ให้รายละเอียดเกี่ยวกับโครงสร้างภายในอะตอมโดยผ่านกระแสไฟฟ้าตรงเข้าไปในหลอดแก้วบรรจุแก๊สความดันต่ำซึ่งที่ภาวะนี้มีจำนวนอะตอมของแก๊สไม่หนาแน่นประจุไฟฟ้าสามารถเดินทางผ่านได้ไกลและพบว่าเมื่อเพิ่มความต่างศักย์ระหว่างขั้วไฟฟ้าให้สูงขึ้นจะมีกระแสไฟฟ้าไหลผ่านตลอด
ขณะเดียวกันจะมีรังสีออกจากแคโทดไปยังแอโนดรังสีนี้เรียกว่ารังสีแคโทดเรียกหลอดแก้วชนิดนี้ว่าหลอดรังสีแคโทด
นักวิทยาศาสตร์ได้ทำการทดลอง
เพื่อศึกษาการเคลื่อนที่ของรังสีแคโทดโดยให้เคลื่อนที่ผ่านสนามไฟฟ้าดังรูป
พบว่าแนวการเคลื่อนที่เบนไปจากเดิมโดยเบนเข้าหาขั้วบวกของสนามไฟฟ้าเนื่องจากรังสีแคโทดเบนเข้าหาขั้วบวกของสนามไฟฟ้าจึงสรุปได้ว่า
รังสีแคโทดประกอบด้วยอนุภาค ที่มีประจุไฟฟ้าลบ
จากข้อมูลการทดลองร่วมกับทฤษฎีทางแม่เหล็กไฟฟ้าทำให้ทอมสันนำมาใช้คำนวณอัตราส่วนของประจุต่อมวลของรังสีแคโทดได้ทอมสันได้ทดลองเพื่อศึกษาอัตราส่วนของประจุต่อมวลของรังสีแคโทดซ้ำหลายครั้งโดยเปลี่ยนชนิดของแก๊สและชนิดของโลหะที่ใช้ทำเป็นขั้วแคโทดปรากฏว่าอัตราส่วนของประจุต่อมวลของรังสีแคโทดมีค่าโดยประมาณเท่ากันคือ
1.76 × 10^8
คูลอมบ์/กรัมจึงสรุปได้ว่าอนุภาครังสีแคโทดที่ออกมาจากโลหะต่างชนิดกันเป็นอนุภาคเดียวกันซึ่งต่อมาได้ด้วยอนุภาคนี้ว่า
อิเล็กตรอน
รู้หรือไม่? ในปีพ.ศ 2429 ออยเกนโกลด์ชไตน์
ได้ศึกษาหลอดรังสีแคโทดและได้ค้นพบรังสีแอโนดหรือรังสีแคแนล ซึ่งมีประจุบวกแต่ยัง
ลงรายละเอียดไม่ได้ในยุคนั้น จากการค้นพบของโกลด์สไตน์ และการศึกษาเพิ่มเติมของนักวิทยาศาสตร์อีกหลายคนในยุคต่อมาทำให้ได้ข้อสรุปว่าในอะตอมนอกจากจะมีอิเล็กตรอนแล้วยังมีอนุภาคที่เป็นประจุบวกอีกด้วยทำให้อะตอมเป็นกลางทางไฟฟ้า
การค้นพบอิเล็กตรอนของทอมสันทำให้สรุปได้ว่าอะตอมทุกชนิดมีอิเล็กตรอนเป็นองค์ประกอบซึ่งลบล้างแนวคิดที่ว่าอะตอมแบ่งแยกไม่ได้และเนื่องจากสารต่างๆที่อยู่ในสภาวะปกติจะเป็นกลางทางไฟฟ้านักวิทยาศาสตร์จึงสรุปว่าอะตอมเป็นกลางทางไฟฟ้าซึ่งจากข้อมูลดังกล่าวทำให้ทอมสันเสนอแบบจำลองของอะตอมว่า
อะตอมเป็นรูปทรงกลมประกอบด้วยเนื้ออะตอมซึ่งมีประจุบวกและอิเล็กตรอนซึ่งมีประจุลบกระจายอยู่ทั่วดังรูป
2.1.3 แบบจำลองของรัทเทอร์ฟอร์ด
เมื่อปีพ.ศ 2454
รัทเทอร์ฟอร์ดนักวิทยาศาสตร์ชาวอังกฤษ และ ฮันส์ ไกเกอร์ นักวิทยาศาสตร์
ชาวเยอรมัน
ได้ที่สุดแบบจำลองของอะตอมของทอมสันโดยการยิงอนุภาคแอลฟาไปยังแผ่นทองคำบางๆ
ผลการทดลองของรัทเทอร์ฟอร์ด
ไม่สามารถอธิบายได้ด้วยแบบจำลองอะตอมของทอมสันรัทเทอร์ฟอร์ดอธิบายลักษณะภายในอะตอมว่าการที่รังสีแอลฟาส่วนใหญ่ผ่านแผ่นทองคำไปได้แสดงว่าภายในแผ่นทองคำต้องมีที่ว่างอยู่เป็นบริเวณกว้างการที่รังสีแอลฟาบางอนุภาคเบี่ยงเบนหรือสะท้อนกลับมาบริเวณด้านในของฉากเรืองแสงแสดงว่าภายในอะตอมน่าจะมีกลุ่มอนุภาคที่มีขนาดเล็กมากมีมวลสูงมากกว่ารังสีแอลฟาและมีประจุบวกและทดสอบจึงได้เสนอแบบจำลองใหม่ว่าอะตอมประกอบด้วยนิวเคลียสที่มีขนาดเล็กอยู่ภายในและมีประจุไฟฟ้าโดยมีอิเล็กตรอนเคลื่อนที่อยู่รอบรอบดังรูป
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด ไม่ได้อธิบายว่าอิเล็กตรอนอยู่รอบนิวเคลียสในลักษณะใดนักวิทยาศาสตร์จึงได้ทำการทดลองเพื่อรวบรวมข้อมูลเพิ่มเติมเกี่ยวกับตำแหน่งของอิเล็กตรอน
เพื่อนำมาสร้างเป็นแบบจำลองที่มีความสมบูรณ์แบบยิ่งขึ้น
2.1.4 แบบจำลองอะตอมของโบร์
สเปกตรัมแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นต่างกันและมีความถี่ต่อเนื่องกันเป็นช่วงกว้างมีทั้งที่มองเห็นได้และมองเห็นไม่ได้มีชื่อเรียกต่างกันแสงที่ประสาทตาของมนุษย์สามารถรับรู้ได้เรียกว่าแสงที่ตามองเห็นมีความยาวคลื่นอยู่ในช่วง
400 ถึง 700 นาโนเมตร ซึ่งประกอบด้วยแสงสีต่างๆแต่ประสาทตาของมนุษย์ไม่สามารถแยกแสงที่มองเห็นเป็นสีต่างๆได้เองทำให้มองเห็นสีรวมกันซึ่งเรียกว่าแสงขาวและเมื่อแสงขาว
ส่องผ่านปริซึม
แสงขาวจะแยกออกเป็นแสงสีรุ้งต่อเนื่องกันเรียกว่าแถบสเปกตรัมของแสงขาว
มักซ์ พลังค์ นักวิทยาศาสตร์
ชาวเยอรมันได้ศึกษาพลังงานของคลื่นแม่เหล็กไฟฟ้าและได้ข้อสรุปเกี่ยวกับความสำคัญระหว่างพลังงานของคลื่นแม่เหล็กไฟฟ้ากับความถี่ของคลื่นนั้นว่าพลังงานของคลื่นแม่เหล็กไฟฟ้าจะแปรผันตามความถี่ของคลื่นและแปรผกผันกับความยาวของคลื่นดังความสัมพันธ์ต่อไปนี้
E แปรผันตรงกับ v
หรือ
E = hv
เนื่องจาก E = c/แลมดาร์
ดังนั้น E = hc/แลมดาร์ช
เมื่อ E คือพลังงานของคลื่นแม่เหล็กไฟฟ้า
มีหน่วยเป็นจูล
h คือค่าคงตัวของพลังค์ มีค่า 6.626 × 10^-34 จูลต่อวินาที
v คือความถี่ของคลื่นแม่เหล็กไฟฟ้า
มีหน่วยเป็นเฮิรตซ์
c คือความเร็วของคลื่นแม่เหล็กไฟฟ้า เท่ากับ 3
× 10^8 เมตรต่อวินาที
และ แลมดาร์ คือ ความยาวคลื่นมีหน่วยเป็นเมตร
ความสัมพันธ์ดังกล่าว
เมื่อนำมาคำนวณพลังงานของแถบสีต่างๆในสเปกตรัมของแสงขาวซึ่งมีความยาวคลื่นต่างๆจะได้ดังนี้
จากการทดลองการใช้เกรตติงส่องดูแสงอาทิตย์และแสงจากหลอดฟลูออเรสเซนต์
สังเกตสิ่งที่ปรากฏแล้ว พบว่าสเปกตรัมจากแสงอาทิตย์มีสีต่อเนื่องกันเป็น
แถบสเปกตรัม เส้นสเปกตรัมที่มองเห็นจากหลอดฟลูออเรสเซนต์ นอกจากจะมองเห็นเป็นแถบสเปกตรัมของสีชนิดต่างๆแล้วพื้นยังมีเส้นสีต่างๆปรากฏในแถบสเปกตรัมอีกด้วยและจากการสังเกตสเปกตรัมของไฮโดรเจนฮีเลียม
นีออน และปรอท เพราะว่าถ้าแต่ละชนิดให้สเปกตรัมที่มีแสงสีต่างกันและมีจำนวน เส้นสีเฉพาะตัวเส้นสีนี้เรียกว่า เส้นสเปกตรัม
ธาตุต่างๆ เมื่อได้รับพลังงานจะเปล่งแสงเป็นสีต่างๆหลายสีเมื่อสีเหล่านั้นรวมกันแล้วจะสังเกตเห็นเป็นสีเดียวกันซึ่งทางเราไม่สามารถบอกความแตกต่างได้แต่เมื่อใช้แผ่นเกรตติงส่องดูจะเห็นเส้นสเปกตรัมของแต่ละธาตุที่มีลักษณะเฉพาะเช่นจำนวนสี
จำนวนเส้น หรือตำแหน่งที่เกิดต่างกันไปการเกิดเส้นสเปกตรัมของธาตุอธิบายได้ว่าอิเล็กตรอนซึ่งเคลื่อนที่อยู่รอบบริเวณนิวเคลียสมีพลังงานเฉพาะตัวที่ต่ำหรือกล่าวได้ว่าอะตอมอยู่ใน
สถานะพื้น เมื่ออะตอมได้รับ
พลังงานเพิ่มขึ้นทำให้อิเล็กตรอนถูกกระตุ้นให้มีพลังงานสูงขึ้นหรือ อะตอมอยู่ใน
สถานะกระตุ้น ที่สถานะอะตอมจะไม่เสถียรเนื่องจากมีพลังงานสูงอิเล็กตรอนจึงคายพลังงานออกมาส่วนหนึ่งทำให้อะตอมมีพลังงานลดลงและกลับเข้าสู่สภาพที่มีพลังงานต่ำลงเพื่อให้อะตอมมีความเสถียรมากขึ้นพลังงานส่วนใหญ่ที่ขายออกมาจะปรากฏในรูปพลังงานแสงและสามารถคำนวณได้โดยใช้ความสัมพันธ์ตามสมการของพลังค์
ซึ่งได้กล่าวไว้แล้วในข้างต้นถ้าแสงสีเหล่านี้แยกออกจากกันอย่างชัดเจนจะปรากฏเป็นเส้นสเปกตรัมแต่ถ้าแสงสีที่ปรากฏออกมามีลักษณะต่อเนื่องกันเป็นเส้นเดียวอย่างกับรุ้งหรือจากไส้หลอดไฟฟ้า
ซึ่งเป็นโลหะร้อนและมีอะตอมอยู่กันอย่างหนาแน่นจะให้สเปกตรัมเป็นแถบสเปกตรัมซึ่งยากแก่การวิเคราะห์และแปลผลต่อภาวะอิเล็กตรอนที่มีพลังงานต่างๆเรียกว่า
ระดับพลังงานของอิเล็กตรอน การเปลี่ยนแปลงพลังงาน
ของอิเล็กตรอนระหว่างสถานะการ์ตูนและสถานะพื้นสามารถ
อุปมานได้กับการกลิ้งลงบันไดของลูกบอลจากรูปจะเห็นว่าพลังงานศักย์หน้าบันไดแต่ละท่านมีค่าไม่เท่ากันโดยลูกบอลที่อยู่บันไดขั้นต่ำจะมีพลังงานศักย์ต่ำกว่าบันไดขั้นสูงและผลต่างของพลังงานระหว่างบันได
2
ขั้นมีค่าเฉพาะตัวที่แน่นอนโดยบันไดที่อยู่ห่างกันมากๆจะมีผลต่างของพลังงานมากกว่าบันไดที่อยู่ติดกัน
จากการศึกษาเส้นสเปกตรัมของอะตอมไฮโดรเจนทำให้สรุปได้ว่า
1.เมื่ออิเล็กตรอนได้รับพลังงานในปริมาณที่เหมาะสม
อิเล็กตรอนจะขึ้นไปอยู่ในระดับพลังงานที่สูงกว่าระดับพลังงานเดิมแต่จะอยู่ในระดับใดขึ้นอยู่กับปริมาณพลังงานที่ได้รับการที่เล็กตามขึ้นไปอยู่ในระดับพลังงานใหม่ทำให้
อะตอมไม่เสถียรอิเล็กตรอนจะกลับมาอยู่ในระดับพลังงานที่ต่ำกว่าซึ่งการเปลี่ยนตำแหน่งของแต่ละระดับพลังงานนี้อิเล็กตรอนจะคายพลังงานออกมาในรูปของคลื่นแม่เหล็กไฟฟ้าด้วยความถี่เฉพาะค่าหนึ่งหรือกล่าวได้ว่าการดูดหรือคายพลังงานของอิเล็กตรอนในอะตอมต้องมีค่าเฉพาะตามทฤษฎีของคลังโดยมีค่าเท่ากับความถี่ของคลื่นแม่เหล็กไฟฟ้านั้นคุณด้วยค่าคงที่ของพลังค์ดังกล่าวมาแล้ว
2.การเปลี่ยนแปลงระดับพลังงานของอิเล็กตรอนไม่จำเป็นต้องเปลี่ยนไประดับพลังงานที่อยู่ติดกันอาจมีการเปลี่ยนข้ามระดับพลังงานได้และจะอยู่ระหว่างระดับพลังงานไม่ได้
3.ผลต่างระหว่างพลังงานของระดับพลังงานต่ำจะมีค่ามากกว่าผลต่างของระดับพลังงานที่สูงขึ้นไป
สร้างความรู้เรื่องการเปลี่ยนแปลงระดับพลังงานของอิเล็กตรอนและการเกิดสเปกตรัมช่วยให้โบร์นักวิทยาศาสตร์ชาวเดนมาร์ก
สร้างแบบจำลองอะตอมเพื่อใช้อธิบายพฤติกรรมของอิเล็กตรอนในอะตอมดังกล่าวโดยกล่าวว่าอิเล็กตรอนจะเคลื่อนที่รอบนิวเคลียสเป็นวงกลมคล้ายกับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์แต่ละวงจะมีระดับพลังงานเฉพาะตัวระดับพลังงานของอิเล็กตรอนที่อยู่ใกล้นิวเคลียสที่สุดมีระดับพลังงานต่ำที่สุดเรียกว่าระดับเขตและระดับพลังงานที่อยู่ถัดออกมาเรียกเป็น
L M N ... ตามลำดับ
ต่อมาได้มีการใช้ตัวเลขแสดงถึงระดับพลังงานของอิเล็กตรอนคือ n = 1 หมายถึงระดับพลังงานที่ 1 ซึ่งอยู่ใกล้กับบริเวณนิวเคลียสและฉันผ่านมา n
= 2 หมายถึงระดับพลังงานที่ 2 ต่อจากนั้น N = 3
4 ... หมายถึงระดับพลังงานที่ 3 4 และสูงขึ้นไปตามลำดับ
2.1.5 แบบจำลองอะตอมแบบกลุ่มหมอก
แบบจำลองอะตอมของโบร์มีข้อจำกัดคือไม่สามารถใช้อธิบายสเปกตรัมของอะตอมที่มีลายเล็กตรอนได้นักวิทยาศาสตร์จึงได้ศึกษาเพิ่มเติมจนได้รับข้อมูลเพียงพอที่เชื่อถือว่าอิเล็กตรอนมีสมบัติเป็นทางอนุภาพและคลื่นโดยเคลื่อนที่รอบนิวเคลียสบริเวณที่พบอิเล็กตรอนมีหลายลักษณะเป็นรูปทรงต่างๆกันตามระดับพลังงานของอิเล็กตรอนจากการประยุกต์ใช้สมการทางคณิตศาสตร์และใช้คอมพิวเตอร์ช่วยในการคำนวณเพื่อหาโอกาสที่จะพบอิเล็กตรอนในระดับพลังงานต่างๆพบว่าสามารถอธิบายเส้นสเปกตรัมของธาตุได้ถูกต้องกว่าแบบจำลองของโบร์
และสามารถอธิบายได้ว่าอิเล็กตรอนมีขนาดเล็กมาก
และเคลื่อนที่อย่างรวดเร็วตลอดเวลาไปทั่วทั้งอะตอมจึงไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้อย่างไรก็ตามนักวิทยาศาสตร์พบว่ามีโอกาสที่จะพบอิเล็กตรอนรอบนิวเคลียสบางบริเวณเท่านั้นทำให้สามารถมโนภาพได้ว่าอะตอมประกอบด้วยกลุ่มหมอกอิเล็กตรอนรอบนิวเคลียสบริเวณที่กลุ่มออกหรือแสดงว่ามีโอกาสที่จะพบอิเล็กตรอนได้มากกว่าบริเวณที่มีกลุ่มออกจากเรื่องแบบจำลองนี้ว่าแบบจำลองอะตอมแบบกลุ่มหมอกดังรูป
2.2 อนุภาคในอะตอมและไอโซโทป
ในหัวข้อที่ผ่านมานักเรียนได้ทราบแล้วว่าทอมสันค้นพบอิเล็กตรอนและค่าประจุต่อมวลในหัวข้อนี้นักเรียนจะได้รู้
เกี่ยวกับอนุภาคชนิดอื่นที่เป็นองค์ประกอบของอะตอม
2.2.1 อนุภาคในอะตอม
ในปีพ.ศ 2451
โรเบิร์ตแอนดรูส์มิลลิแกน
นักวิทยาศาสตร์ชาวอเมริกันได้ทำการหาค่าประจุของอิเล็กตรอนโดยการอาศัยสังเกตหยดน้ำมันในสนามไฟฟ้าดังรูป
เมื่อไรน้ำมันที่ร่วงผ่านรูบนขั้วไฟฟ้าบวกกระทบรังสีจะมีประจุไฟฟ้าเกิดขึ้นทำให้ละอองน้ำมันบังหมดเคลื่อนที่เข้าหาขั้วไฟฟ้าบวกบางหยดเคลื่อนที่เข้าหาขั้วไฟฟ้าล็อคและปลดลอยนิ่งอยู่ระหว่างสนามไฟฟ้าขนาดของหยดน้ำมันที่ลอยนิ่งอยู่ระหว่างสนามไฟฟ้าสามารถสังเกตได้จากกล้องจุลทรรศน์และนำมาคำนวณหามวลของหยดน้ำมันที่สร้างความหนาแน่นของน้ำมันและจากความสำคัญของน้ำหนักของหยดน้ำมันที่ลอยนิ่งเท่ากับแรงที่เกิดจากสนามไฟฟ้าทำให้สามารถคำนวณค่าประจุไฟฟ้าบนหยดน้ำมันได้
ซึ่งพบว่าค่าประจุไฟฟ้าบนหยดน้ำมันมีค่าเป็นจำนวนเท่ากับ 1.60 × 10^-19 คูลอมบ์
มิลลิแกนจึงสรุปว่าประจุของอิเล็กตรอนมีค่าเท่ากับ 1.60 × 10^-19 คูลอมบ์
ไม่นำมาใช้คำนวณร่วมกับค่าประจุต่อมวลที่รายงานไว้โดยทอมสันจะได้หมดอิเล็กตรอนเท่ากับ
9.11 × 10^-28 กรัม
ในปีพศ. 2429 ออยเกนโกลด์
ชไตน์
ได้ทำการดัดแปลงหลอดรังสีแคโทดโดยการสลับตำแหน่งของแคโทดแอโนดซึ่งเมื่อผ่านกระแสไฟฟ้าเข้าไปพบว่าจะเกิดการเรืองแสงแสดงว่ามีรังสีจากแอโนดซึ่ง
เรียกรังสีนี้ว่ารังสีแคแนลหรือรังสีแอโนดซึ่งมีประจุบวก
ออยเกนโกลด์ชไตน์ได้ทำการทดลองกับแก๊สหลายชนิดพบว่ารังสีเอกซ์มีค่าประจุต่อมวลไม่คงที่จนกระทั่งกลุ่มนักวิจัยนำทีมโดยรัฐศาสตร์และทอมสันได้ทำการศึกษาหล่อในลักษณะเดียวกันที่บรรจุแก๊สไฮโดรเจนทำให้ได้ข้อสรุปว่าอนุภาคบวกมีค่าประจุเท่ากับอิเล็กตรอนและหาค่ามวลของประจุได้เป็น
1.673 × 10^-24 กรัมซึ่งมากกว่ามวลอิเล็กตรอนประมาณ
1840 เท่าที่อนุภาคนี้ว่าโปรตอน
ในปีพศ 2475 เจมส์แชดวิก
นักวิทยาศาสตร์ชาวอังกฤษได้ทดลองยิงอนุภาคแอลฟาเพลงอะตอมของธาตุต่างๆและทดสอบผลการทดลองด้วยเครื่องมือที่มีความเสี่ยงสูงทำให้ทราบว่าในนิวเคลียสมีอนุภาคที่เป็นกลางทางไฟฟ้าและเรียกว่านิวตรอนซึ่งมีมวลใกล้เคียงกับมวลของโปรตอนการค้นพบนิวตรอนช่วยอธิบายและสนับสนุนข้อมูลเกี่ยวกับมวลของอะตอมซึ่งคำว่ามีค่ามากกว่ามวลรวมของโปรตอนเสื้อผ้าคาร์บอนมีมวลของโปรตอนรวมกัน
6 หน่วยประมวลของอะตอมมีค่า 12 หน่วยและมวลของธาตุส่วนใหญ่มีค่าเป็น 2
เท่าหรือมากกว่า 2
เท่าของมวลโปรตอนทั้งหมดรวมกันดังนั้นอิเล็กตรอนโปรตอนและนิวตรอนจึงเป็นอนุภาคในอะตอมซึ่งอนุภาคแต่ละชนิดมีรายละเอียดดังนี้
2.2.2 เลขอะตอมเลขมวลและไอโซโทป
อะตอมประกอบด้วยโปรตอนและนิวตรอนรวมกันเป็นนิวเคลียสของอะตอมและมีอิเล็กตรอนซึ่งมีจำนวนเท่ากับจำนวนโปรตอนเคลื่อนที่อยู่รอบๆอะตอมของธาตุแต่ละชนิดมีจำนวนโปรตอนเฉพาะตัวไม่ซ้ำกับธาตุอื่นตัวเลขที่แสดงจํานวนโปรตอน
เรียกว่า เลขอะตอม
และเนื่องจากมวลของอิเล็กตรอนมีค่าน้อยมากดังนั้นเมื่อของอะตอมส่วนใหญ่จึงเป็นมวลของนิวเคลียสซึ่งประกอบด้วยโปรตอนและนิวตรอน
ผลรวมของจำนวนโปรตอนและนิวตรอน ว่า เลขมวล
สัญลักษณ์ที่แสดงรายละเอียดเกี่ยวกับสัญลักษณ์ของธาตุเลขอะตอมและเลขมวลของอะตอมเรียกว่าสัญลักษณ์นิวเคลียส
อะตอมของธาตุชนิดเดียวกันมีจำนวนโปรตอนและอิเล็กตรอนเท่ากันแต่จำนวนนิวตรอนอาจมีได้หลายค่าทำให้อะตอมของธาตุเดียวกันมีมวลต่างกัน
เฟรเดอริก ซอดดี
นักเคมีชาวอังกฤษอะตอมของธาตุเดียวกันที่มีเลขมวลต่างกันว่าไอโซโทป นอกจากนี้ยังมี
ไอโซโทน ซึ่งหมายถึง ธาตุต่างชนิดกันแต่มีนิวตรอนเท่ากัน ไอโซบาร์ หมายถึง
ธาตุต่างชนิดกันเลขมวลเท่ากันแต่ละอะตอมต่างกัน และไอโซอิเล็กทรอนิกส์ หมายถึง
ธาตุหรือไอออนที่มีจำนวนอิเล็กตรอนเท่ากัน
2.3 การจัดเรียงอิเล็กตรอนในอะตอม
2.3.1 จำนวนอิเล็กตรอนในแต่ละระดับพลังงาน
จากการศึกษาแบบจำลองอะตอมทำให้ทราบว่าอะตอมประกอบด้วยโปรตอนและนิวตรอนอยู่รวมกันในนิวเคลียสโดยอิเล็กตรอนเคลื่อนที่อยู่รอบรอบและอยู่ในระดับพลังงานต่างกันเล็กตอนเหล่านั้นอยู่กันอย่างไรและในแต่ละระดับพลังงานจะมีอิเล็กตรอนสูงสุดเท่าไหร่ให้พิจารณาข้อมูลแสดงการจัดเรียงอิเล็กตรอนของธาตุบางธาตุดังตาราง
เมื่อพิจารณาข้อมูลแล้วจะพบว่าจำนวนอิเล็กตรอนในระดับพลังงานที่
1 มีได้มากที่สุดคือ 2 อิเล็กตรอนระดับพลังงานที่ 2
มีได้มากที่สุดคือแบบอิเล็กตรอนสำหรับระดับพลังงานที่ 3
จากการสืบค้นข้อมูลเพิ่มเติมทำให้ทราบว่ามีมากที่สุด 18 อิเล็กตรอนด้วยคือจำนวนอิเล็กตรอนมากที่สุดที่มีได้ในแต่ระดับพลังงานจะมีค่าเท่ากับ
2n^2 เมื่อ n คือตัวเลขแสดงระดับพลังงานถ้าพิจารณาตามหลัก
2n^2 การจัดเรียงอิเล็กตรอนของธาตุ K และ
Ca ควรเป็น 289
และจากการศึกษาพบว่าการจัดเรียงอิเล็กตรอนของธาตุ K และ Ca
เป็น 2 8 8 1 และ 2 8 8 2
ตามลำดับซึ่งหมายความว่าอิเล็กตรอนในระดับพลังงานที่ 3 ของธาตุทั้งสองมีเพียง 8
อิเล็กตรอนและอิเล็กตรอนที่เพิ่มมา 1 และ 2
อิเล็กตรอนนั้นเข้าไปอยู่ในระดับพลังงานที่ 4 ทำให้ระดับพลังงานที่ 3
มีอิเล็กตรอนไม่ครบ 18 อิเล็กตรอน
2.3.2 ระดับพลังงานหลักและระดับพลังงานย่อย
นักเรียนทราบมาแล้วว่าโบเสนอแบบจำลองโดยใช้ข้อมูลเกี่ยวกับเส้นสเปกตรัมของไฮโดรเจนซึ่งแสดงให้เห็นว่าอะตอมของไฮโดรเจนมีพลังงานหลายระดับและความแตกต่างระหว่างพลังงานของแต่ละระดับที่อยู่ถัดไปก็ไม่เท่ากันโดยความแตกต่างของพลังงานจะมีค่าน้อยลงเมื่อระดับพลังงานสูงขึ้นการอธิบายเกี่ยวกับเส้นสเปกตรัมของโบว์ได้จุดประกายให้นักวิทยาศาสตร์หลายคนเกิดความสนใจและศึกษาเกี่ยวกับเส้นสเปกตรัมมากขึ้น
และพบว่าเส้นสเปกตรัมของไฮโดรเจนที่เปล่งแสงออกมาและมองเห็นเป็นหนึ่งเส้นแท้จริงนั้นประกอบด้วยเส้นสเปกตรัมมากกว่า
1
เส้นซึ่งนำไปสู่ข้อสรุปที่ว่าเส้นสเปกตรัมที่เกิดขึ้นนอกจากเป็นการคายพลังงานของอิเล็กตรอนจากระดับพลังงานหลักซึ่งแทนด้วย
n แล้วยังเป็นการ
พลังงานของอิเล็กตรอนจากระดับพลังงานย่อยของแต่ละระดับพลังงานหลักอีกด้วยนักวิทยาศาสตร์ได้กำหนดระดับพลังงานย่อยเป็นตัวอักษร
s p d และ f ตามลำดับ
ระดับพลังงานที่ 1 (n = ) มี
1 ระดับพลังงานย่อยคือ s ระดับพลังงานหลักที่ 2 (n = 2) มี 2 ระดับพลังงานย่อยคือ s p ระดับพลังงานที่ 3
(n = 3) มี 3 ระดับพลังงานย่อยคือ s p d และระดับพลังงานหลักที่ 4 (n = 4) มี 4 ระดับพลังงานย่อยคือ
s p d f
2.3.3 ออร์บิทัล
อิเล็กตรอนมีการเคลื่อนที่ตลอดเวลาความหนาแน่นของกลุ่มหมอกอิเล็กตรอน
ซึ่งอยู่ในรูปของโอกาสที่จะพบอิเล็กตรอนซึ่งมีอาณาเขตและรูปร่างใน 3
มิติแตกต่างกันบริเวณรอบนิวเคลียสซึ่งมีโอกาสที่จะพบอิเล็กตรอนและมีพลังงานเฉพาะนี้เรียกว่าออเรนทอลการศึกษา
พบว่าจำนวนออร์บิทัลในแต่ละพลังงานย่อยมีค่าแตกต่างกันซึ่งสรุปได้ดังนี้ระดับพลังงานย่อย
s มี 1 ออร์บิทัล ระดับพลังงานย่อย p มี
3 ออร์บิทัล ระดับพลังงานย่อยดีมี 5 ออร์บิทัล รอบพลังงานย่อย f มี 7 ออร์บิทัล
อิเล็กตรอนที่อยู่ในระดับพลังงานสูงสุดหรือชั้นนอกสุดของอะตอมเรียกว่า
เวเลนซ์อิเล็กตรอน การบรรจุอิเล็กตรอน ตามลำดับระดับพลังงานโดยอาศัยแผนภาพตามหลัก
อาฟบาว ดังที่กล่าวมาแล้ว มีบางธาตุที่การบรรจุอิเล็กตรอนในระดับพลังงานย่อยไม่ได้เป็นไปตามหลักการนั้น
เช่น Cr มีเลขอะตอม 24 Cu มีเลขอะตอม
29
ธาตุที่ได้รับหรือเสียอิเล็กตรอน
สามารถเขียนการจัดเรียงอิเล็กตรอนได้ดังนี้ 1.กรณีที่ถ้าได้รับอิเล็กตรอน
ให้บรรจุอิเล็กตรอนปกติรวมกับอิเล็กตรอนที่รับเข้ามาตามลำดับระดับพลังงานโดยอาศัยแผนภาพตามหลัก
อาฟบาว 2.กรณีที่ถ้าเสียอิเล็กตรอนให้บรรจุอิเล็กตรอน
ตามปกติก่อนจากนั้นจึงนำอิเล็กตรอนที่อยู่ชั้นนอกสุดออก
2.4 ตารางธาตุและสมบัติของธาตุหมู่หลัก
ปัจจุบันนักวิทยาศาสตร์ได้ค้นพบธาตุแล้วเป็นจำนวนมากถ้าเรานั้นอาจมีสมบัติบางประการคล้ายกัน
และบางประการแตกต่างกันจึงยากที่จะจดจำสมบัติต่างๆของแต่ละธาตุได้ทั้งหมดนักวิทยาศาสตร์จึงหาเกณฑ์ในการจัดธาตุที่มีสมบัติคล้ายการให้อยู่ในกลุ่มเดียวกันเพื่อง่ายต่อการศึกษา
2.4.1 วิวัฒนาการของตารางธาตุ
เมื่อมีการค้นพบธาตุและศึกษาสมบัติของธาตุเหล่านี้แล้วเราวิทยาศาสตร์ได้หาความสัมพันธ์ระหว่างสมบัติต่างๆ
ของธาตุและนำมาใช้จัดตารางธาตุเป็นกลุ่มได้หลายแบบ
ในปีพศ. 2360
โยฮันน์เดอเบอไรเนอร์ เต้นนักเคมีคนแรกที่พยายามจัดตารางธาตุเป็นกลุ่มกลุ่มกลุ่มละ
3 ช่าตอนสมบัติที่คล้ายคลึงกันเรียกว่าชุดสาม
โดยพบว่าท่าทางจะมีมวลอะตอมเป็นค่าเฉลี่ยของมวลอะตอมของอีก 2 ธาตุที่เหลือ ดังรูป
ในปีพ. ศ. 2427
จอห์นนิวแลนด์ นักวิทยาศาสตร์ชาวอังกฤษได้เสนอในการจัดธาตุเป็นหมวดหมู่ว่า
ถ้าเรียนต่างชาติหมดอะตอมจากน้อยไปมากพบว่าถ้าที่ 8
จะมีสมบัติเหมือนท่าที่หนึ่งเสมอ โดยไม่รวมค่าไฮโดรเจนและแก๊สมีสกุล
การจัดเรียงธาตุตามแนวคิดของนิวตันใช้ได้ถึงธาตุแคลเซียมเท่านั้นกดนี้ไม่สามารถอธิบายได้เพราะว่า
เหตุใดมวลอะตอมจึงเกี่ยวข้องกับสมบัติที่คล้ายคลึงกันของธาตุทำให้ไม่เป็นที่ยอมรับในเวลาต่อมา
ดังรูป
ในปีพศ 2412 ยูลิอุส โลทาร์
ไมเออร์ นักวิทยาศาสตร์ชาวเยอรมันและ ดิมิทรี เมนเดเลเอฟ
นักวิทยาศาสตร์ชาวรัสเซียศึกษารายละเอียด
ของทอดต่างๆมากขึ้นทำให้มีข้อสังเกตว่าถ้าท่านเองตามมวลอะตอมจากน้อยไปมากจะพบว่าท่านมีสมบัติคล้ายกันเป็นช่วงช่วงการที่ธาตุต่างๆมีสมบัติคล้ายกันเป็นช่วงช่วงเช่นนี้
จึงต้องเป็นกรดเรียกว่ากฎพิริออดิก การจัดธาตุเป็นหมวดหมู่ของเมนเดเลเอฟ
ไม่ได้หยุดการเรียงลำดับตามมวลอะตอมจากน้อยไปมากเพียงอย่างเดียวแต่ได้นำสมบัติที่คล้ายคลึงกันของธาตุที่ปรากฏซ้ำกันเป็นช่วงๆมาพิจารณาด้วยนอกจากนี้ยังได้เว้นช่องว่างไว้โดยคิดว่าน่าจะเป็นตำแหน่งของธาตุที่ยังไม่ได้มีการค้นพบโดยที่ตำแหน่งของธาตุในตารางธาตุมีความสัมพันธ์
กับสมบัติของธาตุเมนเดเลเอฟ จึงได้ทำนายสมบัติของธาตุ ที่ยังไม่ได้มีการค้นพบ 3
ธาตุและให้ชื่อว่า เอคา-โบรอน เอคา-อะลูมิเนียม และ เอคา-ซิลิกอน ในเวลาต่อมา
ก็ได้ค้นพบธาตุสแกนเดียม แกลเลียม และเจอร์เมเนียมตามลำดับ
ซึ่งสมบัติใกล้เคียงกับที่ได้ทำนายไว้
ในปีพ. ศ. 2456 เฮนรี โมสลีย์
นักวิทยาศาสตร์ชาวอังกฤษ เสนอให้จัด ธาตุเรียงตามเลขอะตอม เนื่องจากสมบัติต่างๆของธาตุมีความสัมพันธ์กับประจุบวกในนิวเคลียสหรือเลขอะตอมมากกว่ามวลอะตอม
ตารางธาตุในปัจจุบันจึงได้ปรับปรุงมาจากตารางธาตุของเมนเดเลเอฟแต่เรียงธาตุตามเลขอะตอมจากน้อยไปมาก
ดังรูป
แบ่งธาตุในแนวตั้งเป็น 18
แถวโดยเรียกแถวในแนวตั้งว่าหมู่และแบ่งธาตุในแนวนอนเป็น 7
แถวโดยเรียกแถวในแนวนอนว่าคาบ
2.4 .2 กลุ่มของธาตุในตารางธาตุ
การที่นักวิทยาศาสตร์จัดธาตุในตารางธาตุเป็นหมู่และคาบเพื่อให้ง่ายต่อการศึกษาสมบัติของธาตุต่างๆถ้าแบ่งกลุ่มของธาตุตามสมบัติความเป็นโลหะจะแบ่งได้
3
กลุ่มคือธาตุโลหะเป็นธาตุที่นำไฟฟ้าและความร้อนได้ดีธาตุกึ่งโลหะเป็นธาตุที่นำไฟฟ้าได้ไม่ดีที่อุณหภูมิห้องจะจะนำไฟฟ้าได้ดีเมื่ออุณหภูมิสูงขึ้นและธาตุอโลหะซึ่งเป็นธาตุที่ไม่นำไฟฟ้าเลยยกเว้นคาร์บอนและฟอสฟอรัสดำเมื่อพิจารณาตำแหน่งของธาตุพบว่าธาตุโลหะอยู่ทางซ้ายมือของตารางธาตุ
ธาตุอโลหะจะอยู่บริเวณที่เป็นขั้นบันไดและธาตุอโลหะจะอยู่ขวามือของตารางธาตุยกเว้นไฮโดรเจนอยู่ทางซ้ายมือของตารางธาตุ
ถ้าแบ่งกลุ่มธาตุในตารางธาตุโดยพิจารณาการจัดเรียงอิเล็กตรอน
ในออร์บิทัล s p d f ที่มีพลังงานสูงสุด
และมีอิเล็กตรอนบรรจุอยู่จะแบ่งธาตุได้เป็น 4 กลุ่มใหญ่คือถ้ากลุ่ม s ได้แก่ธาตุในหมู่ที่ 1
และ 2 ธาตุกลุ่ม p ได้แก่ธาตุในหมู่ที่ 13 ถึง 18
ยกเว้นฮีเลียมธาตุกลุ่มดีได้แก่ธาตุในหมู่ที่ 3 ถึง 12 ส่วนธาตุในกลุ่ม f ได้แก่กลุ่มธาตุที่อยู่ด้านล่างของตารางธาตุที่นิยมมาจากหมู่
3 คาบที่ 6 และ 7
ธาตุกลุ่ม s และธาตุกลุ่ม p เรียกรวมกันว่า ถ้ากลุ่ม a ซึ่งเป็นกลุ่มของธาตุเรพรีเซนเททีฟ หรืออาจเรียก กลุ่มธาตุหมู่หลัก
เมื่อพิจารณาการจัดเรียงอิเล็กตรอนของธาตุกลุ่มเอพบว่าถ้าในแนวตั้งที่อยู่ในกลุ่มเอจะมีเวเลนซ์อิเล็กตรอนและจำนวนเวเลนซ์อิเล็กตรอน
เท่ากัน จะตรงกับเลขหมู่ธาตุบางหมู่มีการกำหนดชื่อที่เป็นสากลเช่น 5 หมู่ IA
มีชื่อเรียกว่าโลหะแอลคาไล ธาตุหมู่ IIA มีชื่อเรียกว่าโลหะแอลคาไลน์เอิร์ท
ธาตุหมู่ VIIA มีชื่อเรียกว่า ธาตุแฮโลเจน และธาตุหมู่ VIIIA
ยกเว้น Og เรียกว่าแก๊สมีสกุล กลุ่ม d และ f เรียกรวมกันว่าธาตุกลุ่ม B หรือกลุ่มแทรนซิชัน
ซึ่งแบ่งเป็นทรานซิชันชั้นนอกและธาตุแทรนซิชันชั้นในได้แก่กลุ่ม d และ f ตามลำดับ ยังสามารถแบ่งได้เป็น 2
กลุ่มย่อยกลุ่มได้อยู่คาบที่ 6 และมีเลขอะตอมตั้งแต่ 57 ถึง 71
เมื่อกลุ่มนี้ว่าแลนทานอยด์ กลุ่มที่ 2 อยู่คาบที่ 7 และมีเลขอะตอมตั้งแต่ 89 ถึง
130 กลุ่มนี้ว่ากลุ่มธาตุแอกทินอยด์ เมื่อพิจารณา
การจัดเรียงอิเล็กตรอนของธาตุแทรนซิชันพบว่าจำนวนเวเลนซ์อิเล็กตรอนส่วนใหญ่เท่ากับ
2 เมื่อพิจารณาธาตุกลุ่มนี้ตามแนวนอนพบว่าจำนวนระดับพลังงานจะตรงกับเลขที่คาบเช่นเดียวกับธาตุในกลุ่มธาตุหมู่หลัก
จากการศึกษาการจัดเรียงธาตุในตารางธาตุช่วยให้ทราบถึงตารางธาตุในปัจจุบันจัดธาตุเป็นหมู่และคาบโดยอาศัยสมบัติบางประการที่คล้ายกันสมบัติของธาตุหมู่หลักตามหมู่และตามคาบซึ่งได้แก่ขนาดอะตอม
รัศมีไอออน พลังงานไอออไนเซชัน อิเล็กโทรเนกาติวิตี สัมพันธภาพอิเล็กตรอน
2.4.3 ขนาดอะตอม
ตามแบบจำลองอะตอมแบบกลุ่มหมอกอิเล็กตรอนที่อยู่รอบนิวเคลียสจะเคลื่อนที่ตลอดเวลาด้วยความเร็วสูงและไม่สามารถบอกตำแหน่งที่แน่นอนรวมทั้งไม่สามารถกำหนดขอบเขตที่แน่นอนของอิเล็กตรอนได้นอกจากนี้อะตอมโดยทั่วไปไม่อยู่เป็นอะตอมเดียวแต่จะมีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกันถึงเป็นเรื่องยากที่จะวัดขนาดอะตอมที่อยู่ในสภาวะอิสระหรือเป็นอะตอมเดี่ยวในทางปฏิบัติจึงบอกขนาดอะตอมด้วยรัศมีอะตอมซึ่งกำหนดให้มีค่าเท่ากับครึ่งหนึ่งของระยะทางระหว่างนิวเคลียสของอะตอมทั้ง
2 ที่มีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกันหรือที่อยู่ชิดกัน เพื่อศึกษา
รัศมีอะตอมของธาตุทำให้ทราบขนาดอะตอมของธาตุและสามารถเปรียบเทียบขนาดอะตอมของธาตุที่อยู่ในคาบเดียวกันหรือหมู่เดียวกันได้ดังรูป
เมื่อพิจารณาขนาดอะตอมของธาตุที่อยู่ในคาบเดียวกันพบว่า
ขนาดอะตอมมีแนวโน้มลดลงหมายเลขอะตอมเพิ่มขึ้นอธิบายได้ว่าเนื่องจากธาตุในคาบเดียวกันมีเวเลนซ์อิเล็กตรอนอยู่ในระดับพลังงานเดียวกันแต่มีจำนวนโปรตอนในนิวเคลียสต่างกันเท่าที่มีจำนวนโปรตอนมากจะดึงดูดเวเลนซ์อิเล็กตรอนด้วยอะไรที่มากกว่าธาตุที่มีจำนวนโปรตอนน้อยเวเลนซ์อิเล็กตรอนจึงเข้าใกล้นิวเคลียสได้มากกว่าทำให้อิเล็กตรอนมีขนาดเล็กลงส่วนธาตุในหมู่เดียวกันเมื่อใดอะตอมเพิ่มขึ้นจำนวนโปรตอนในนิวเคลียสและจำนวนระดับพลังงานที่มีต่ออีก
1
ตอนเพิ่มขึ้นด้วยอิเล็กตรอนที่อยู่ในชั้นในจึงเป็นคล้ายฉากกั้นแรงดึงดูดระหว่างโปรตอนในนิวเคลียสกับเวเลนซ์อิเล็กตรอนทำให้แรงดึงดูดต่อ
เวเลนซ์อิเล็กตรอน
มีน้อยเป็นผลให้ธาตุในหมู่เดียวกันมีขนาดอะตอมใหญ่ขึ้นตามเลขอะตอม
2.4.4 ขนาดไอออน
อะตอมซึ่งมีจำนวนโปรตอนเท่ากับอิเล็กตรอนเมื่อรับอิเล็กตรอนเพิ่มเข้ามาหรือเสียอิเล็กตรอนออกไปอะตอมจะกลายเป็นไอออนการบอกขนาดของไอออนทำได้เช่นเดียวกับการบอกขนาดของอะตอม
กล่าวคือ
จะบอกเป็นค่ารัศมีไอออนซึ่งพิจารณาจากระยะทางระหว่างนิวเคลียสของไอออนคู่หนึ่งหนึ่งที่ยึดเหนี่ยวซึ่งกันและกันในโครงผลึก
เมื่อโลหะ ทำปฏิกิริยากับอโลหะอะตอมของโลหะจะเสียเวลาแต่เล็กจนกลายเป็นไอออนบวกจำนวนอิเล็กตรอนในอะตอมจึงลดลงทำให้แรงผลักระหว่างอิเล็กตรอนลดลงด้วยหรือกล่าวอีกนัยหนึ่งก็คือแรงดึงดูดระหว่าง
ประจุในนิวเคลียสกับอิเล็กตรอนจากเพิ่มมากขึ้น Iron ห่วงจึงมีขนาดเล็กกว่าอะตอมเดิม
ส่วนอะตอมของอโลหะนั้นส่วนใหญ่จะรับอิเล็กตรอนเพิ่มเข้ามาและเกิดเป็นไอออนลบเนื่องจากมีการเพิ่มขึ้นของจำนวนอิเล็กตรอนขอบเขตของกลุ่มหมอกอิเล็กตรอนจะขยายออกไปจากเดิมไอออนลบจึงมีขนาดใหญ่กว่าอะตอมเดิม
ดังรูป
2.4.5 พลังงานไอออไนเซชัน
พลังงานปริมาณน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดจากอะตอมในสถานะแก๊สเรียกว่าพลังงานไอออไนเซชัน
โดยค่า IE แสดงถึงความยากง่ายในการทำให้
อะตอมในสถานะแก๊สกลายเป็นไอออนบวก โดยอีน้อยแสดงว่าทำให้เป็นไอออนบวกได้ง่ายแต่ถ้า
IE มากแสดงว่าทำให้เป็นไอออนบวกได้ยากก็ทำให้ไฮโดรเจนอะตอมในสถานะแก๊สกลายเป็นไรโดยเช่นไอออนและสถานะแก๊สเขียนได้ดังนี้
H(g) ----> H^+(g) + e^-
การทำให้อิเล็กตรอนหลุดออกจากอะตอมของไฮโดรเจนจะต้องใช้พลังงานอย่างน้อยที่สุด
1318 กิโลจูลต่อโมล นั่นคือ พลังงานไอออไนเซชันของไฮโดรเจนอะตอมเท่ากับ 1318
กิโลจูลต่อโมล ธาตุไฮโดรเจน มี 1
อิเล็กตรอนจึงมีค่าพลังงานไอออไนเซชันเพียงค่าเดียวถ้าธาตุที่มีหลายอิเล็กตรอน
ก็จะมีพลังงานไอออไนเซชันหลายค่าพลังงานที่น้อยที่สุดที่ทำให้อิเล็กตรอนตัวแรกหลุดออกมาจากอะตอม
ที่อยู่ในสถานะแก๊สเรียกว่าพลังงานไอออไนเซชันลำดับที่ 1 เขียนย่อเป็น IE 1
พลังงานที่ทำให้อิเล็กตรอนในลำดับต่อๆมาหลุดออกมาจากอะตอมเรียกว่าพลังงานไอออไนเซชันลำดับที่
2 3 ... และเขียนย่อเป็น IE 2 IE 3
ตามลำดับ
2.4.6 สัมพรรคภาพอิเล็กตรอน
พลังงานที่ถูกคายออกมาเมื่ออะตอมในสถานะแก๊สได้รับอิเล็กตรอน 1
อิเล็กตรอนเลขว่าสัมพรรคภาพอิเล็กตรอนเขียนสมการการเปลี่ยนแปลงได้ดังนี้
A(g) + e^- ---> A^-(g)
หาค่าสัมพรรคภาพอิเล็กตรอน
มีค่าเป็นบวกหมายความว่าอะตอมคายพลังงานเมื่อได้รับอิเล็กตรอนแสดงว่าอะตอมของธาตุนั้นมีแนวโน้มที่จะได้รับอิเล็กตรอนได้ดี
ถ้าค่าสัมพรรคภาพอิเล็กตรอนเป็นลบแปลว่าต้องใช้พลังงานเพิ่มเข้าไปเพื่อให้และรับอิเล็กตรอนได้เพิ่มขึ้น
1 อิเล็กตรอน เมื่อพิจารณาตามข้อพบว่าค่าสัมพรรคภาพอิเล็กตรอนของธาตุอโลหะยกเว้น
หมู่ VIIIA มีค่ามากกว่าธาตุโลหะแสดงว่าธาตุอโลหะมีแนวโน้มที่จะได้รับอิเล็กตรอนได้ดีกว่าถ้าโลหะเมื่อพิจารณาโดยภาพรวมทั้งหมดจะพบว่าธาตุหมู่
VIIA มีค่าสัมพรรคภาพอิเล็กตรอนสูงที่สุดแสดงว่ามีแนวโน้มในการรับอิเล็กตรอนได้ดีกว่าท่านผู้อื่นที่เป็นเช่นนี้อาจอธิบายได้ว่าการรับ
1 อิเล็กตรอนของธาตุในหมู่นี้จะทำให้มีอะตอมที่มีการจัดเรียงอิเล็กตรอนของธาตุหมู่
VIIA หรือแก๊สมีสกุลซึ่งมีความเสถียรมาก
2.4.7 อิเล็กโทรเนกาติวิตี
อิเล็กโทรเนกาติวิตีความสามารถของอะตอมในการดึงดูดอีเล็คตรอนคู่ที่ใช้ร่วมกันในโมเลกุลของสารแนวโน้มค่าอิเล็กโทรเนกาติวิตีของธาตุในตารางเป็นดังนี้
เมื่อพิจารณาค่าอิเล็กโทรเนกาติวิตีของธาตุในคาบเดียวกันพบว่ามีแนวโน้มเพิ่มขึ้นตามเลขอะตอมเนื่องจากในคาบเดียวกันอะตอมของธาตุหมู่
IA มีขนาดใหญ่ที่สุดและหมู่ VIIA มีขนาดเล็กที่สุด
ความสามารถในการดึงดูดอีเล็คตรอนตามข้ามจึงเพิ่มขึ้นจากหมู่ IA ไปหมู่ VIIA ดังนั้นในคาบเดียวกันธาตุหมู่ IA
จึงมีค่าอิเล็กโทรเนกาติวิตีต่ำที่สุดควรธาตุหมู่ VIIA มีค่าอิเล็กโทรเนกาติวิตีสูงที่สุดธาตุในหมู่เดียวกันมีแนวโน้มของค่าอิเล็กโทรเนกาติวิตี
ลดลงเมื่อเลขอะตอมเพิ่มขึ้นเนื่องจากขนาดของอะตอมที่เพิ่มขึ้นเป็นผลให้นิวเคลียสดึงดูดอิเล็กตรอนลดลง
2.5 ธาตุแทรนซิชัน
สมบัติของธาตุหมู่ A มาแล้วต่อไปจะได้ศึกษาธาตุอีกกลุ่มหนึ่งซึ่งอยู่ระหว่างธาตุหมู่
IA และหมู่ IIIA ที่เรียกว่าถ้าแทรนซิชันประกอบด้วยธาตุหมู่
IB ถึงหมู่ VIIIB รวมทั้งกลุ่มธาตุแลนทานอยด์และแอกทินอยด์
ธาตุแทรนซิชันเหล่านี้มีอยู่ในธรรมชาติและได้จากการสังเคราะห์บ้างถ้าเป็นธาตุกัมมันตรังสี
2.5.1 สมบัติของธาตุแทรนซิชัน
จากตาราง
พบว่าธาตุแทรนซิชันในคาบที่ 4
มีสมบัติหลายประการคล้ายกับโลหะหมู่หลักในคาบเดียวกันเช่นมีพลังงานไอออไนเซชันลำดับที่
1 และค่าอิเล็กโทรเนกาติวิตีต่ำอย่างไรก็ตามธาตุแทรนซิชันซึ่งมีจุดหลอมเหลวจุดเดือดและความหนาแน่นสูงกว่าโลหะหมูน่ะ
เมื่อพิจารณาขนาดอะตอมพบว่าถ้าธาตุแทรนซิชันมีขนาดใกล้เคียงกันและมีขนาดเล็กกว่าโลหะโพแทสเซียมและแคลเซียมเพื่ออธิบายเกี่ยวกับขนาดอะตอมของธาตุแทรนซิชันให้พิจารณาการจัดเรียงอิเล็กตรอนของธาตุโพแทสเซียมแคลเซียมและธาตุแทรนซิชันในคาบที่
4 ดังตารางต่อไปนี้
จากตารางจะเห็นได้ว่าธาตุแทรนซิชันในคาบที่ 4
ส่วนใหญ่มีจำนวนเวเลนซ์อิเล็กตรอนเป็น 2
และมีจำนวนอิเล็กตรอนในระดับพลังงานย่อยที่อยู่ถัดจากระดับพลังงานนอกสุดเข้าไปไม่เท่ากันเนื่องจากอิเล็กตรอนตัวสุดท้ายบรรจุอยู่ในระดับพลังงานย่อย
3d
2.6 ธาตุกัมมันตรังสี
ถ้ามีกลุ่มหนึ่งในตารางธาตุซึ่งมีสมบัติแตกต่างจากที่เคยศึกษามาแล้วคือสามารถแผ่รังสีแล้วกลายเป็นอะตอมของธาตุใหม่ได้
ในปีพศ. 2439 อองตวนอองรีแบ็กเกอแรล
นักวิทยาศาสตร์ชาวฝรั่งเศสพบว่าเมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำไว้กับสารประกอบของยูเรเนียม
แผ่นฟิล์มจะมีลักษณะเหมือนถูกแสงและเมื่อทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่นๆก็ได้ผลเช่นเดียวกันจึงสรุปว่าน่าจะมีรังสีแพรออกมาจากธาตุยูเรเนียมต่อมาปีแอร์
กูรี และมารีกูรี ได้ค้นพบว่า ธาตุพอโลเนียมเรเดียมและทอเรียม ก็สามารถ
รังสีได้เช่นเดียวกันปรากฏการณ์ที่ธาตุแพ้รังสีเองได้อย่างต่อเนื่องเรียกว่ากัมมันตภาพรังสี
ซึ่งเป็นการเปลี่ยนแปลงภายในนิวเคลียส
ของไอโซโทปที่ไม่เสถียรและไอโซโทปของธาตุที่สามารถแผ่รังสีเองได้อย่างต่อเนื่องเรียกว่าไอโซโทปกัมมันตรังสีหรือสารกัมมันตรังสี
2.6.1 การเกิดกัมมันตภาพรังสี
การเกิดกัมมันตภาพรังสีเป็นปรากฏการณ์ที่เกิดกับไอโซโทปกัมมันตรังสีเพราะนิวเคลียสมีพลังงานสูงมากและไม่เสถียรจึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีจากการศึกษานักวิทยาศาสตร์แสดงให้เห็นว่ารังสีที่แผ่ออกมาจากไอโซโทปกัมมันตรังสีอาจเป็นรังสีแอลฟาบีตาหรือแกมมาสมบัติของรังสีบางชนิด
2.6.2 การสลายตัวของไอโซโทปกัมมันตรังสี
จากการศึกษาไอโซโทป ของธาตุจำนวนมากทำให้ได้ข้อสังเกตว่า
ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสมคือนิวเคลียสที่มีจำนวนนิวตรอนแตกต่างจากจำนวนโปรตอนมากเกินไปและจะไม่เสถียรจึงเกิดการเปลี่ยนแปลงภายในนิวเคลียสโดยการแผ่รังสีออกมาแล้วเกิดเป็นนิวเคลียสของธาตุใหม่ที่เสถียรกว่า
การแผ่รังสีบีตา
เกิดกับนิวเคลียสที่มีจำนวนนิวตรอนมากกว่าโปรตอนมาก
นิวตรอนในนิวเคลียสจะเปลี่ยนไปเป็นโปรตอนและอิเล็กตรอนซึ่งอิเล็กตรอนจะถูกปลดปล่อยออกจากนิวเคลียสในรูปของรังสีบีตาและนิวเคลียสใหม่จะมีเลขอะตอมเพิ่มขึ้น
1 โดยมวลยังคงเดิม
การแผ่รังสีแกมมา
เกี่ยวกับไอโซโทปกัมมันตรังสีที่มีพลังงานสูงมากหรือไอโซโทปที่สลายตัวให้รังสีแอลฟาหรือบีตา
แต่นิวเคลียสที่เกิดใหม่ยังไม่เสถียรเพราะมีพลังงานสูงจึงเกิดการเปลี่ยนแปลงให้มีพลังงานต่ำลงโดยปล่อยพลังงานส่วนเกินออกมาเป็นรังสีแกมมา
การแผ่รังสีแอลฟา
ส่วนใหญ่เกิดจากนิวเคลียสที่มีเลขอะตอมสูงกว่า 83
และมีจำนวนนิวตรอนต่อโปรตอนในสัดส่วนที่ไม่เหมาะสม เมื่อปล่อยรังสีแอลฟาออกมา
จะกลายเป็นนิวเคลียสของธาตุใหม่ที่เสถียรซึ่งมีเลขอะตอมลดลง 2 และเลขมวลลดลง
2.6.3 อันตรายจากไอโซโทปกัมมันตรังสี
กิจวัตรต่างๆในชีวิตประจำวันทั้งการรับประทานอาหารดื่มน้ำหายใจด้วยมีโอกาสที่มนุษย์จะได้รับรังสีจากไอโซโทปกัมมันตรังสีเข้าสู่ร่างกายนอกจากนี้ยังได้รับรังสีคอสมิกซึ่งเป็นรังสีที่ส่วนใหญ่มาจากอวกาศและสิ่งต่างๆเหล่านี้มีแหล่งกำเนิดจากธรรมชาตินอกจากนี้บางคนยังได้รับรังสีที่มนุษย์สร้างขึ้นมาเช่นรังสีจากโรงไฟฟ้านิวเคลียร์
แม้มนุษย์จะได้รับรังสีจากกิจวัตรประจำวันแต่การได้รับรังสีจากธรรมชาติหรือจากที่มนุษย์สร้างขึ้นในปริมาณเพียงเล็กน้อยโดยน้อยกว่า
100 มิลลิซีเวิร์ต เซลล์เนื้อเยื่อ สามารถฟื้นตัวได้แต่การได้รับรังสีมากกว่า 100
มิลลิซีเวิร์ต ทำให้เกิดความเสี่ยงต่อสุขภาพได้ เช่นการคลื่นไส้ การอาเจียนอา
การปวดหัว การเป็นมะเร็ง
สำหรับหน่วยงานที่ทำงานเกี่ยวกับรังสีจะต้องแสดงสัญลักษณ์รังสีลงบนฉลาก
ของพันชนะหรือเครื่องมือ รวมทั้งบริเวณใกล้เคียงเพื่อให้ผู้พบเห็นได้ระมัดระวัง
สัญลักษณ์รังสีใช้เป็นมาตรฐานจะได้รูปใบพัด 3
แฉกมีสีม่วงอ่อนม่วงเข้มหรือสีดำบนพื้นสีเหลืองดังรูป
เนื่องจากสัญลักษณ์รังสีดังรูปสื่อความหมายไม่ได้ชัดเจนหรือบุคคลที่ไม่เกี่ยวข้องอ่านไม่เข้าใจความหมายดังนั้น
ทบวงปรมาณูระหว่างประเทศ
และองค์กรระหว่างประเทศว่าด้วยมาตรฐานได้ออกแบบสัญลักษณ์ใหม่เป็นรูปคลื่นของรังสีกะโหลกไขว้และคนกำลังวิ่งดังรูป
2.6.4 ครึ่งชีวิตของไอโซโทปกัมมันตรังสีไอโซโทป
กัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออกมาได้เองตลอดเวลาไอโซโทปกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกันอัตราการสลายตัวของไอโซโทปกัมมันตรังสีจะบอกเป็นครึ่งชีวิตใช้สัญลักษณ์
t1/2
โดยหมายถึงระยะเวลาที่นิวเคลียสของไอโซโทปกัมมันตรังสีสลายตัว
จนเหลือครึ่งหนึ่งของปริมาณเดิมไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งหนึ่งจะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ
ตัวอย่างดังรูป
Nเหลือ = Nเริ่มต้น/2n
T = nt1/2
โดย Nเหลือ
แทนปริมาณกัมตรังสีที่เหลือ
T แทนจำนวนเวลาที่ธาตุสลายตัว
Nเริ่มต้น แทนปริมาณกับมมันตรังสีเริ่มต้น
n
แทนจำนวนครั้งในการสลายตัวของครึ่งชีวิต
2.6.5 ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของไอโซโทปกัมมันตรังสีเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็กแล้วได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาลซึ่งสามารถนำมาใช้ประโยชน์ได้
ในปีพศ. 2482
นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียส U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่า
กระบวนการที่นิวเคลียสของไอโซโทปของธาตุบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า
ฟิชชัน ไอโซโทปของธาตุอื่นที่สามารถเกิดฟิชชันได้
เช่น U-238 การเกิดฟิชชัน
แต่ละครั้งจะคายพลังงานออกมาเป็นจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิดซึ่งถือว่าได้เป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญนอกจากนี้ฟิสชั่นยังได้นิวตรอนเกิดขึ้นอีกด้วย
ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นจะเกิดเป็นฟิชชันต่อเนื่องไปเรื่อยๆเรียกปฏิกิริยานี้ว่า
ปฏิกิริยาลูกโซ่
ฟิชชันที่เกิดภายในภาวะที่เหมาะสม
จะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็วทำให้ฟิชชัน
ดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาเป็นจำนวนมหาศาลถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดรุนแรงหลักการเกิดปฏิกิริยาลูกโซ่ได้นำมาใช้ในการทำระเบิดปรมาณูการควบคุมฟิชชันทำได้หลายวิธี
เช่นควบคุมมวลของสารตั้งต้นให้น้อยลงเพื่อให้จำนวนนิวตรอนที่เกิดมีไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้
ในกรณีที่นิวเคลียสของธาตุเบา 2
ชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่า เดิมและให้พลังงานปริมาณมาก
ปฏิกิริยานี้เรียกว่า ฟิวชัน ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยากับที่เกิดบนดวงอาทิตย์การเกิดฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากและเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้าร่วมกันซึ่งประมาณว่าจะต้องมีอุณหภูมิสูงถึงหลายล้านองศาเซลเซียส
พลังงานมหาศาลนี้อ่านได้จากฟิชชันซึ่งเปรียบเสมือนฉนวนที่ทำให้เกิดฟิวชั้น ถ้าพลังงานที่ปล่อยออกมามาจากฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆและต่อเนื่องจะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ฟิวชันมีข้อได้เปรียบมากกว่าฟิชชันหลายประการกล่าวคือคายพลังงานออกมาม่าสารตั้งต้นของฟิวชันหาได้ง่ายและมีปริมาณมากนอกจากนี้ผลิตภัณฑ์ที่เกิดจากฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่า
ผลิตภัณฑ์จากการเกิดฟิชชัน แม้จะมีการค้นพบกระบวนการฟิวชั่นมานานแต่
การนำมาใช้อย่างเป็นรูปธรรม เป็นไปได้ยากเพราะการเกิดฟิวชั้นต้องใช้อุณหภูมิสูงมากซึ่งที่สภาวะนี้แสนจะเปลี่ยนเป็นรูป
Plasma ซึ่งไม่เสถียรดังนั้นการควบคุมกระบวนการฟิวชันให้เกิดอย่างต่อเนื่องเป็นไปได้ยากมาก
2.6.6 เทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
สารกัมมันตรังสีแต่ละชนิดมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกันการนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน
ด้านธรณีวิทยา ใช้ C-14
ซึ่งมีครึ่งชีวิต 5730 ปีหาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ
เช่นไม้กระดูกการหาอายุโบราณโดยการวัดปริมาณของ C-14
อธิบายได้ว่าในบรรยากาศมี C-14
ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
ด้านการแพทย์
ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆในร่างกายโดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อยจากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมของไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆ
ด้านเกษตรกรรม
ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืชโดยเริ่มจากการดูดซึมที่รากจนถึงการคายออกที่ใบ
หรือจำนวนแร่ธาตุที่พืชสะสมไว้ในใบ
ด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่างเช่นใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อและติดตามการแผ่รังสีด้วยเครื่องไกเกอร์
มึลเลอร์ เคาน์เตอร์ บริเวณใดที่มี สัญญาณจำนวนนับมากผิดปกติแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น
2.7
การนำภาพไปใช้ประโยชน์และผลกระทบต่อสิ่งมีชีวิตมนุษย์
มนษย์นำธาตุุมาใช้ประโยชน์ตั้งแต่อดีตกาลเช่นนำทองคำมาทำเป็นเครื่องประดับ
นำเหล็กมาทำเป็นมีน้ำทองใดมาทำเป็นภาชนะหรือเครื่องใช้
ในปัจจุบันมีการค้นพบและศึกษาสมบัติของธาตุมากขึ้นจึงมีการนำธาตุมาใช้ประโยชน์ได้หลากหลายขึ้น
2.7.1 ประโยชน์ของธาตุ
การจำแนกธาตุออกเป็นกลุ่มนอกจากจะช่วยให้ง่ายต่อการศึกษาสมบัติของธาตุแล้วยังง่ายต่อการพิจารณาสมบัติที่เหมาะสมในการนำไปประยุกต์ใช้งานอีกด้วย
-ธาตุโลหะ มีสมบัติการนำความร้อนและไฟฟ้าได้ดีจึงนิยมนำมาเป็นอุปกรณ์นำไฟฟ้าเช่นนำทองแดงมาทำสายไฟน้ำสังกะสีมาทำขั้วไฟฟ้าของถ่านไฟฉาย
-ธาตุกึ่งโลหะ เช่นซิลิกอน เจอร์เมเนียม
มีสมบัติก้ำกึ่งระหว่างโลหะกับโลหะ
นำไฟฟ้าได้แต่นำไม่ดีนิยมนำมาทำเป็นสารกึ่งตัวนำ
-ธาตุหมู่ 18 เป็นธาตุที่เฉยต่อการเกิดปฏิกิริยาจึงนำมาใช้ประโยชน์ตามสมบัติของแก๊สมีสกุลเช่นนำ-ฮีเลียมซึ่งมีความหนาแน่นน้อยกว่าอากาศมาบรรจุในบอลลูนและเรือเหาะแทนแก๊สไฮโดรเจน
-ธาตุมีไอโซโทปกัมมันตรังสี
สามารถนำมาใช้ประโยชน์ได้ดังที่กล่าวไว้ในหัวข้อ 2.6.6 และธาตุุที่อยู่กลุ่มเดียวกันจะมีสมบัติคล้ายกันแต่ถ้าชุดชนิดยังมีสมบัติเฉพาะตัวที่แตกต่างกันด้วยดังนั้นการนำไปใช้ประโยชน์จึงมีความจำเพาะแตกต่างกันการที่ธาตุแต่ละชนิดมีสมบัติเฉพาะตัวแตกต่างกันทำให้บางครั้งนักวิทยาศาสตร์ต้องนำธาตุมากกว่า
1 ชนิดมาละลายหรือผสมกันเพื่อให้มีสมบัติตามที่ต้องการและนำไปใช้ประโยชน์ได้หลากหลายมากขึ้น
2.7.2 ผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อม
ไม่มีความคิดเห็น:
แสดงความคิดเห็น